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THEORY OF FLAME PROPAGATION*

By Y. B. Zeldovich

The mechanism of flame propagation has been qualitatively
formulated. In accordance with this formulation, the chemical
reaction initiated in some layer brings about an increase in the
temperature because of the heat conduction, the temperature is raised
in the neighborin~ layer where in turn the chemical reaction is ini-
tiated. In this manner the flame is propagated.

Michelson (reference 1) is credited with presenting the first
reliable method for measuring the flame speed and for computinz the
temperature distribution in the preheated zone of burning gas. In
various papers on the theory of the speed of combustion (Jouguet
(reference 2), Nusselt (reference 3), Daniell (reference 4), and
others), a solution is found only by making simplifying assumptions
that do not correspond to the actual conditions. The comparatively
unknown work of Taffanel (reference 5) is the most similar to present-
day views.

In the work of Jest and von M;ffling (references 6 and 7), Sachsse
(reference 8), and particularly Lewis andvon Elbe (reference 9), a
method is formulated that is satisfied by theory, that is’,the dif-
fusion as well as the heat conductivity is considered, the concept of
ibaition temperature is not included, and the continuous dependence of
the speed of reaction on the temperature and concentration is taken
into account.

This method was first carried out in the work of D. A. Frank-
Ka.menetskii.and the author (reference 10), in which an approximate
method is given for the computation of the flame speed under definite
rational assumptions concerning the chemical reaction and the constants
of the explosive mixture.

The experimental work carried out at the Institute of Chemical
Physics (reference 11) confirmed the validity of the theory.

In accordance with what has been previously stated, a more strict
consideration of the problemj appears desirable} that is, an explanation

*“K Teorii Rasprostranenia Plameni.” Zhurnal Fizicheskoi Khimii
(USSR), T. 22, 1948, pp. 27-49.

.
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of those general conditions that must be satisfied by an explosive
mixture for the possible existence of the phenomenon of flame propa-
gation; determination of a general method of computing the flame
velocity for an arbitrary relation among rate of reaction, tempera-
ture, and concentration; and finally, determination and evalua-
tion of the errors of the aforementionedapproximate method (refer-
ence 10).

The present paper bears greater resemblance in its form to a
mathematical than to a physiochemical investigation. The subject,
however, is actually the physiochemical problem of the conditions
under which the chemical.reaction proceeds during combustion. The
theory developed permits studying the rate of the reactions occurring
at temperatures of 1500 to 30000.c for a time of the order of a
millisecond to enable the measurement of the flame velocj.ty. The
mathematical apparatus provided.is not complicated.;the computation
work is simularly not extensive particularly if it is compared with
the difficulty of the direct experimental realization of the indepen-
dent combustion of the”gas and the direct measurement of the rapid
homogeneous reaction under conditions approximating the flame
conditj.ons.

At the present time, investigations are being conducted and
prepared for publication that concern concrete chemical systems that
will extend our .tiowledgeof the kinetics of the most important
reactions to the region of high temperatures; and w-illprovide a
clear picture of the process of combustion of such propagated explo-
sive mixtures as carbon monoxide - oxygen - nitrogen. Accordingly,
a review of the present state of the theory that presents not only
the final results but the entire basis of the theory, emphasizing
the fundamental physical problems of the existence and properties
of the solution in the general case) would seem desirable.

1. Equations of Heat Conductivity and Diffusion in a Flame

A two-dimensional flame is considered and the equation of heat
conductivity giving the distribution of the temperatures and the
equation of diffusion giving the distribution of the concentrations
are set Upj the total number of equations of diffusion is equal to
the number of reacting substances and the products of the reaction.
Only one equation of diffusion is written for the reacting substance
of which there is a deficiency in the explosive mixture. In con-
trast to the classical problems of hes.tconductivity and diffusion,
the liberation of heat and the consumption of the reacting substances
that depends on the process of the chemical reaction are considered
in the equations.
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symbols are used;

coordinate, x-axis perpendicular to plane of flame, (cm)

density of mixture, (g/cm3)

velodity of motion along x-axis, (cm/see)

temperature, {deg)

specific heat at constant pressure, (cal/(deg)(g))

heat conductivity, (cal/(cm)(sec)(deg))

relative concentration of reacting substance in grams of
substance per one gram of mixture (nondimensional)

coefficient of diffusion, (cm2/see)

velocity of chemical reaction, (g/(sec)(cm3))

thermal effect of reaction, (cal/g)

constant of thermal diffusion (nondimensional)

The equation of heat conductivity has the usual form

The equation of diffusion may be written

(1)

(2)

With change in temperature, the density of the gas is found to
change greatly. The composition of the mixture is characterized
by the magnitude a. The absolute value of the concentration,equal
to ap (g/cm3), changes because of gas expansion, diffusion, and
reaction.

In equation (2) only processes that change the composition
are considered and the expansion is excluded. The magnitude DP (?3a/ax)
represents the mass flow of the substance carried along by the dif-
fusion; in an isothermal diffusion, the flow is generally considered
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to be proportional to the gradient of the absolute concentration
pa, that is, in the case .D @(pa)/a~ . In this case, however,
the deqw.ity p is practi ally constant and whether the mass flow
is written as hD ~(pa)~x or Dp(~a/ax) is immaterial. In
the nonisothermal case, the second form must be definitely chosen
because, in the absence of thermodiffusion (separately considered
by the second term y(Dpa/T)(aT/ax)) in a mixture of constant
composition, there is no “Mffusive flowj that is, the flow is equal
to

for

O for a= constant, even if

Equation (2) may be obtained
the absolute concentration

pa #-constant”in this case. -

by a transformation of the equation

by considerin~ the equation of continuity

(4)
ap ap au—=
at -Uz-pz

The magnitude @ represents the rate of consumption of the
substance in the process of the chemical reaction; the rate of
heat liberation in unit volume is equal to h@ @ is a function
Q(a,T) where Q= O for a= O.

By considering the propagation of the flame, the velocity
of motion of cold gas U. is sought for which the flame front is
stationary and the entire distributionof T and a is independent
of time. It is evident that ~ is equal to the velocity with
which the flame is propagated over the stationary cold gas but it
is more convenient to consider the flow and the distributions of
T and a as being independent of time. As the temperature rises
in a gas flowj p drops and u increases in such a manner that
the product pu is constant at any mint and equal to Pouo●

In e:iuations(1) and (2), the left side (a/at) “isequal to Oj

the symbol a/ax is replacedby d/dx. The following boundary
conditions are imposed on T(x) and a(x):

forx=-~ T= TO a=aO

forx=+m a=O
}

(5)
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II (because for a ~ O and @ ~ O, the condition a = constant ~ O does

!- ‘“””“notsatis~ytheequation)”-//:

~

It is likewise evident that for x = ~
11I
l!
II:1:’ dT da o—=— =

~
dxdx

1!
[
I 2. General Properties of Temperature Distribution

The general properties of T(x) are found by integrating
respect to x from .~ to +COin both equations.

By setting T(+cv)= T2,

r
*m

UPC (T2 - To) = h
I

Qdx

J –=

J.
+Cn

upao = $dx

ha.
= TO+Y

‘2

(5’)

with

(6)

(7)

(8)

(9)

1(10)

Equation (10) agrees with the result of the elementary computation
of the combustion temperature by the energy balance. By considering
equation (6), it is shown that T cannot pass through a maximum
higher than TZ because @oj on the curve passing through the
maximum, however, dT/dx< O and (d/dx)(kdT/dx)>0, which according
to equation (6) requires @ < 0.

In reference 1, incorrect assumptions are encountered, that is,
for a rapid reaction of the gas heated to a certain temperature
TB higher than To, a sudden increase in temperature occurs and

‘In the case of variable c, set H =

s
T cdT.

1 1 11 nllmllml Ilmllm
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~=TB+&
c

higher than T2 = TO + &. Actually, if @ is very large in a
c

very narrow layer so that
J

@dx is finite, then d2T/d,x2 in this

layer is very large, that is, in the limit as ~~a+the magnitude
dT/dx undergoes a discontinuitybut T is continuous an angle appears
on the temperature-distributioncurve (fig.1). It is also evident
that the converse is really true; namely, that at all points at
which ‘$ is finite or equal to O, not only T but also dT/dx
cannot undergo a discontinuity.

3. Relation Between Concentration and Temperature in Mixture of
Gases of Approximately 8ame Molecular Weights

A mixture of gases of nearly the
considered. In this case, it follows
practically no thermodifflzsionoccurs
fusion coefficient is related to heat

k= cpD

same molecular weights is next
from the kinetic theory that

(T = 0) and that the ~f-
conductivityby the expression2

The variable H is introduced (heat content or enthalpy), uniquely
related to T as follows:

f’H= cdT

dH = cdT
}

(11)

(12)

2At room temperature, the heat conductivity Of Oxygen iS

5.9 x 10-5, nitrogen is 5.2 X 10-5~ carbon monoxide is 501 X 10-5~ -
and hydrogen is 40.7 X 10-5. The product cPD for diffusion of

oxygen - nitrogen is 5.8 x 10-5, hydrogen - oxygen is 23 x 10-5~

hydrogen - nitrogen is 21 X 10-5, and hydrogen - hydrogen is

38 X 10-5.
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The equations of heat conductivity and diffusion assume the similar
forms

......
dLu - upti+h@=O (13)
dcdx dx

from ‘which

&~&( H+ah)-up&(H+ah)=O (15)

thus, by considering the boundary conditions (5’) that will give

=&H+ah)=Oforx=~m

the unique solution

H + ah = constant = ~ + aoh

x=-m

H=%

a = a.

X=+m

a = o

H=H2=~+aoh

(15‘)

(16)

(17)
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The concentration is found to be uniquely related to
(in the case of constant specific heat linearly: CT
= CTO + aoh) in such a manner that the total energ~
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the temperature
i-ah= constant
Of a unit TllaSSj

the

the
the

sum of the thermal and chemical energies is constant.

Lewis and von Elbe (reference 9) were the first to postulate
constancy of the total energy in all the intermediate layers in
flame by the assumption of a chain reaction that is brought

about by the diffusion of active centers. From the previous dis-
cussion, it is evident that the constancy of the energy depends
not on the mechanism of the reaction but on the ratio between the
diffusion of the fuel and the heat conductivity of the mixture.
As will be shown, the total energy is not constant for DCP + k
in the region of combustion.,but has a maximti or minimum value.

In considering the case Dcp =
@ (a,T) may be expressed for known
variable magnitude a or T, or H
the composition of the mixture, the

The problem thus reduces to the

AkdH-updH
ticdx dx

1K, the velocity of the reaction
ao, To as a function of one
because of the relation among
temperature,and H.

consideration

+hQ(H)=O

of the one equation

(18)

in which Q(H) is obtained from $(a,T) by the substitution of
T and a from equatj.ons(12) and (16) so that for H = Hz, Q.o
because for H=H2, a=0. Equation (18) may be solved under
boundary conditions (17) and

(18a)

x.=-m

H=%)
X=+m

H= H2
}

3More accurately, the enthalpy (heat content) because the com-
bustion occurs at constant pressure. See definition of C.
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The product up is a constant magnitude that cannot) however> be
considered as hownj it is necessary to determine that value of up
for which the equation has a solution satisfying the.boundary -.
conditions.

4. Condition of Existence and Uniqueness of Solution

The following nondimensional variables and parameters are
introduced:

z _H2-H

H2-%

(19)

where @m, ~, Cm are constants independent of ay H, and other

magnitudes varying in the flame front. All finite results of the
computations, particularly the magnitude of the velocity u, do
not actually depend on the choice of ‘#m,~~ and Cm. Because

1 1--
q~~m%, it is found from equation (20) that m-~m 2 and that

the velocity u~m~; does notdependon@mj hence, the choice

4This convenient system was proposed by S.M. Fainberg in con-
nection with work on the combustion of ozone.
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of @m, Cmj and K is arbitrary. For example, setm

~=k(a=O, T.T2)

1
cm = C(a= O, T = T2)

@ = ~(ao,T2)m 1

It is noted that for Dcp = k,

a
z =—

a.

By substituting and noting that

_=dHdd .—
b dxdH

the following equation is obtained in place of equation (18):

NACA TM 1282

dy
y~+my - q(z)=o

with the boundary conditions

.
z = o

Y=o

z = 1

Y=o }

(20)

(21)

The conditions of the existence of a solution are considered. In
the plane z~y the line Y1 = ~(z)/m is drawn on which dy/dz = O

(fig.2)5. For y< Yl, dy/dz> O. From this condition it is evident

5
Y~ is not the integral curve of equation (20) but only one of

the isoclind equations.
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that if c$(z)> 0 in the entire interval 0< z< 1, the curve
satisfying the condition y = 0, z =.O lies everywhere above the“,
axis of abscissas and never (for any m) falls on the point
z =l,y=o. This condition exists because near the point
z 1, y =,O, dy/dz> O and there are no curves from the region
z: 1, y >0 that pass through this point. Hence, in order that
a solution exist, it is necessary that ‘V becomes O for z< 1.

The case considered first is where an even more strict condi-
tion is satisfied.

(Note fig. 3.)
and uniqueness

cp(z)= O for z> ~, where ~<1 (22)

Also, let C?(z)> 0 for z < ~. The existence
of the solution will be proven. The general theorems—

on the uni~~eness of solution of a given differential equation are
insufficient because the value of the coefficient m must be found.

Consider y (z,m), a function of two variables, as satisfying
constant m of equation (20) and the boundary condition y (O,m) = O.
The following equation is set up~

ay
Yin=%

By dividing equation (20) by y and differentiatingwith respect
to m

dym Cp(z)

Z+~y(z, m~2ym =-’

z = o

Ym=o 1
(23)

(24)

In the region 0s Z< ~, q>O and y> Oj it follows that ym< O.

Set

‘Ym (B}m) = c (25)

In the region B < z < lj dym/dz = - 1 so that

- Ym (1) d =~-+(1-p)>l-p (26)
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Hence, dy/dm for z = 1 is always negative and an absolute value
greater than a certain finite magnitude.

12.82

For m = 0, the initial equation can readily be solved as follows:

dyld
- — (Y2) = ‘Q(z)‘~=2dz

jr }

z

Y= 2 q)(z)dz

o

(27)

{J
1

y (z =1, m= 0)=+ 2 ~(Z) dz> O

0

6(28)

As has been shown, as m increases, y (z = l,m) decreases mono-
tonically and its derivative with respect to m is always finite.
Thus, there is always one and only one r% for which

y(z= 1’%)=0 (29)

This value m. for which both conditions (y = O, z = O and

Y =O,z= 1) are satisfied will give, by formulas (19), the required
flame velocity.

The practical method of finding m for a given Q(Z) and a
given arbitrary value ml consists of finding the corresponding
y(z= 1, ml)
point z = O,
is chosen and
y (z = 1, ml)

are found for

by numeric=l integration of equation (20) from the
Y=o. If y(Z= 1, ml) >0, another m2, m2 > ml,
the numerical integration is again carried outj if
<0, m < m21 is chosen. Several values of y (z = 1)

various m = ml~ m2j m3 and are chosen so that some of

61f the other sign of the root is taken, the sign of m changes,

that is, the propagation is considered in the reverse direction but
all the physical conclusions remain valid.
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the values found for y (z = 1) are positive and
laying off on a graph y (,z= l,m) as a function
of ~ for which y (z,= 1, ~) = O is found by

13

some negative. By
of m} the value
interpolation.

As a result, the velocity of combustion is obtained by the formula

(30)

where
‘o

represents a nondimensional number determinedby the
function (p, that is, by the curve of #k/c as a function of H
(or of the temperature). The dependence of the flame velocity on the
absolute values of the reaction velocity and the heat conductivity
is given by the root of formula (30). In considering the dependence
on the composition of the mixture, it is necessary to take into
account that a. is an important factor in the expressions for
Q and @m because in passing from Q(a,T) to @(H), a. entered
formula (16) relating a and H.

By knowing ~ and the corresponding integral curve y (Z,mo),
the law of distribution of H, T, and a in space as a.function of
x can also be found. For this determination, a single quadrature
is sufficient that cm always be carried out numerically

(31)

where the subscript m denotes all the scalar magnitudes (see equa-
tions (19a)). The expression under the radical represents a constant
magnitude having the dimension of a length and the expression in
parentheses is a nondimensional ratio depending on z.
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By the given condition, x = - cu for z=l and for x=+cw,
z = o. Near z = l,y(z)=m (l- Z) that givess after substi-
tuting the value ~y the &own ~chelkon sol;tion-

~.&ln(T- To) + constant
COPOUO

()koxT= To + constant “ exp —
COPOU()

Thus T+TO only asymptotically as xs -au The behavior of the

solution near
the form of y
expression of

If 9(Z)

z = O, that is, where the reaction ends, depends on
(z) near z = 0, which in turn is determinedly the
cp(z) for small z.

increases near z = O, according to the law

Q(z) = constant Zn

n >1

it is easy to show that

y(z)<Q
m

.
J~dz/ q(z) diverges, the integral

~~~~~ z~e;;~g;;erges. In the absence of diffusion and

he%t conduction for an adiabatic reaction in a closed vessel,
the magnitude z varies according to the equation

g=
dt

- Aq)(z)

1282

(33)

(34)

(35)

(36)

where A = (l/ao) (@k/c)m (c/kp) in the limit for small z approaches

a constant value. Thus, if the integral
J’

dz/Q(z) diverges,
o

then, under adiabatic conditions, the chemical reaction comes to
an end only asymptotically at t+ca. Correspondingly, in consi-
dering the problem of flame propagation, the end of the reaction
a =0, T=T, andH=H2

“f
is reached only in the limit at an

infinite dis ante from the flame front.
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The reverse case for small z is considered.

Y (z) = constant

n+l<l
2

In this case,

cp(z)= constant

n.cl

n- 1
2

“z

n. z

}

(37)

(38)

n
Thus, in the case where the integral J~z/ q(z) is finite, the

n
integral J “dz/Y(z) is likewise finfte and converges near z = O.

0.

Physically, the chemical reaction concerned goes t~ completion
after a finite time under adiabatic conditions (in a closed vessel).
In the presence of diffusion and heat conduction, the chemical
reaction in the flame is likewise found to go to completion at a
finite distance from the flame front (more specifically, at a finite
distance from the place

f
dz/y(z) (for example,

o
of z for which q(z)

The distribution of the

of most intense reaction). By computing

arbitrarily

= maximum),

x=

a =

H.

T=

dT

giving x = O for that value

‘k is found for which

o

‘2

‘3

—=0dx

concentrationsand temperatures
is given by the integral (32). For any

(39)

for x <xk

—
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(40)

z ~ o

J’
J

Thus, in the case of finite dz/~, a singular point at x = Xk
o

appears in the distribution of a(x), T(x), and H(x). At this sin~lar
point, two different solutions, relations (32) and (40), meet and
the values of the magnitudes T, a, and H and their first deriv-
atives wjth respect to x are the same on both sides7. The second
or even higher derivative, however, may suffer a discontinuity,
particulsxly if

near z = o,

‘2-T = constant

q(z) = constant Zn

-l<n.cl

2

(H2 - H) = constant ● a = constant (~ - X)l - n

(41)

where from the conditions imposed on the exponent, it follows that
the degree of (xk - x) is positive and greater than 1 so that

‘2-T= O and dT/dx = O for x-xl<.

7The first derivatives can have a discontinuity only for @+@.

8~e conditi n n< I.

r

follows from the requirement of the
finiteness of dz/qj otherwise, as has been shown, there is no

o
singular point on the curve. The condition 1< n follows from

the requirement of the finiteness of
J

@z. As will be shown,
o

if’this integral diverges} the magnitude m and the flame velocity
are infinite; however, n < 0 already leads to infinite velocity
of reaction for a- 0, which is physically unreal.
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The relations (32) and(40) thus give a complete solution sat-
isfying equation (18) and boundary conditions (18a). The fact that&
the boundary condition H+ H2 is satisfied not only for x = ~
but also for au x > xk does not contradict or prevent the solu-
tion from being considered correct. The part played by ~dz/ Q(z)

was pointed out to the author by V. I. Skobelkin but the author cannot
agree with the opinion of Skobe-Nin that for the existence of a
solution it is necessary that this integral diverge.

A solution has been shown to exist only in the case where for
z = 1, ~ = O, that is, in the,case where the reaction velocity is o
in the initial mixture; for

‘= To’a=ao” The solution has been
found under the stiil more rigorous condition [22). This result
is in no way an indication of the insufficient generality of the
theory and the inapplicability of the theory to any case of flame
propagation. On the contrary, this result entirely corresponds to
those physical conditions that must exist in order that a strictly
stationary process of flame propagation can occur. Not in every
system in which the process of a chemical reaction is thermodynamically
possible will flame propagation be observed, that is, the propaga-
tion in the space of the region of chemical reaction. For this flame
propagation, it is necessary first of all that the heat given out
during the reaction accelerate tle process of the reaction in the
neighboring layer. This condition, however, is still not suffi-
cient; it is also necessary that in the initial state, that is, in
the state in which the mixture is found at x = - co at an infinite
distance from the flame front at the initial temperature To, the
reaction velocity is strictly equal to O. If this condition is
not satisfied, a certain finite time may be found during which the
mixture) which at the initial instant is in the initial state, reacts
in the absence of external actions. This phenomenon can be illus-
trated by imagining an explosive mixture in an infinitely long
pipe. If at the initial instant the mixtl&e throughout is in the
initial state except at the origin of coordinates where the flame
is situated, the time required for the flame to reach a definite
point in the pipe is equal to the distance of this point from the
origin of coordinates divided by the flame velocity. An element of
volume of the mixture with a finite reaction velocity at ‘o and
at a sufficiently long distance from the origin reacts before the
flame reaches it. As a result of the reaction as the flame is
propagated, the properties of the mixture situated ahead of the
flame front at infinity vary. Hence, for @(TO~ao) # O, the
required regime of steady flame propagation is actfiallyphysically
impossible and the absence of a solution of the equation in this
case entirely agrees with the physical picture.
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The peculiar mathematical difficulties arising in the consi-
deration of reactions for which q(z = 1) becomes O, for example,
proportional to (1 - z), is considered. In the caseof heat propa-
gation, there is no significance in investigating the flame velocity
on the assumption that for T near To, the reaction velocity is
proportional to (T - To) because it is experimentally possible to
vary To so that the flame propagation does not change. If for
some ‘o = Tel, Q is set equal to constant (T - TO1), then by this
assumption, the case previously considered, “Q(Z > ~) = O where
~<1, is obtained for T02< Tolj for T03> Tel, cp(l)#O is
obtained, that is) the impossibility of a steady propagation. Thus,
in the heat propagation the assumption @ -(T-TO), Q-(1-z)
is a random one and unsuitable.

From general molecular-kinetic considerations it follows that
at a low temperature near To the velocity of the chemical reaction
is finite and different from O but very small. In this sense,
the existence of a steady flame propagation is an approximation
because @ (ao, To) # 0, but a very good approximation because

~(ao~ To) is very small. By the law of Arrhenius, the v~$ocity
of the reaction at room temperature is of the order of e or e-50

(for unity, the velocity at 3000°C was taken).

The curves of cp/m and Y as functions of z are shown
schematically in figure 4. For z = l,(p#O but for z7p1,
~/m< Y. From a consideration of the equation, it follows that to
obtain a solution it is necessary to set p(z) = O for Z>~j
it is also easy to show that all numerical results (m, u, and the
curve T (x)) depend very little on the choice of’ ~(fig. 4,%

or the larger Pz) if q(z)~l for z> PI.

Thus, although the operation itself of cutting off Y(z) at
z >“ ~ contains an arbitrary element in the choice of ~, the cut-off
is required and arbitrariness
trariness in the results. In
satisfactory.

5. Isothermal

in the choice does not lead to arbi-
this sense, the theory may be considered

Chain of Flame Propagation

The cut-off by means of multiplication by (1 - z) in the heat
propagation of the flame is, as has been shown, a random one. In
considering chain and autocatalytic reactions) however) the assumption
that the velocity of the chemical reaction is proportional to the
concentration of the final product formed in the reaction is of
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interest. For
concentrations
the collisions
equation..-

example, if the
are denoted by

19

transformationof A and B (their
a and b) is assumed to proceed with

of the molecules of A and B according to the
,,..

A+B=2B

then, by assumming a constant temperature, the possibility of flame
propagation is obtained if the substance B transformed duriu the
reaction diffuses in the neighboring layers where the
A is contained and results in a chemical reaction of
stances, in which the velocity constant is denoted by
tion identical to equation (20) is obtained with

pure sub;tance
the two sub-
C. An equa-

~(a,b)=C=a=b

bO-a=a

@m= Cao2

q(z) = z (1 - z)

(42)

In connection with the problem of the propagation of a chemical
reaction, this problem was considered in the unpublished works of
B. N. Skalov and O. M. Todes at the Institute of Chemical Physics
during 1937 and 1938. The results of this work are given in refer-
ence 12. Attention has also been called t~ the very interesting
work of A. N. Kolmogorov, I. G. Petrovskii, and N. S. Pisliunov
(reference 13), which was published in 1937. In this work concern-
ing the equivalent biological problem, all the results of this
problem obtained later at the Institute of Chemical Physics are
presented in an accurate and clear form.

It has been shown that equation (20) for ~(z) given in
equation (42) has a solution satisfying the boundary conditions
for all

m>~=2

c

CDao 9(43)
U>2

P

9Solutions are also possible.for m < 2 but these solutions
require tineexistence of the region z> 1, a za , and b<O in
which @< O, thus indicating their complete phys?cal unreality.
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The physical meaning of these
Q(z), givenby formula (42),

NACA TM

solutions has been clarified. For
even in the absence of diffusion;

1282

the initial distribution- a“ and b in space may be given satis-
fying the condition a = an and b = O for x+ --, which gives
the propagation of the rea~tion in space. As quoted from reference 13:
“The apparent displacement of the substance from the left toward the
right will actually be brought about here by the increase of its
density at each point, entirely independent of the course of the
process at other points.” The time of the reaction according to the
equation

depends logarithmically
infinity for ‘o-a+O

a

da
c a (a. - a)

m=cab=~ (42a)

on the initial value so-a that approaches
and a+ ao. Given the distribution

= a. (1 - em) (forx<O) (44)

that satisfies the condition a + ao, x+ - m a linear dependence
of the reaction time on the coordinate is obtained, which leads to
an apparent displacement with ‘constantvelocity. The smaller n
is the greater is this velocity. By considering the nonstationary
problem that for the particular case (42) has the form

(45)

Kol?nogorov,Petrovskii, and Piskunov showed that as the time t+~,
the portion of the curve a(x, t) on which the initial part of the
change of a from a. to O occurs is displaced in space with a

velocity approaching the minimum value that satisfies the steady-
state equation

IICDaou= 2
T

(45a)

and the distribution a(x, t) approaches the solution of the
steady-state equation. The physical result is confirmed that in
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any case of local inflammation the reaction will be displaced
with a velocity according to e uation (45a) and that larger velo-
cities are physically unreal.18

According to Skalov, the limiting maximum value of the velo-
city in the nonsteady problem may be found by elementary methods by
considering the transformed equation

&= & c-“-a (a. - a)
at axz p 0 (46)

that agrees with equation (45) for ao-a<ao. Equation (46) is con-
sidered throughout for the initial conditions t = O, a = a. except
for a small region near x = O, where a<< ao. By setting

c

a.a
; aot

- qe (47)
o

the following equation of diffusion without sources is obtained for q:

c X2—aot - ~
a.a

o
-A~eP

r
t

(48)

(49)

The relation between x and t is found at the point at which
a = a’ ~ ao, that is, the law of displacement in space for the given
concentration a’

c X2
at-—= ln(ao-a’)-lnA+ $ lnt

;0 4Dt
(50)

10The unreality of a greater u may also be established by the
method of a cut by considering the following relations: Q=o,
zn-a CC, Q= Ca (aO-a), and ao-az ~ and by finding in this case

tiieonly value of ; and the correspondingvalue of u. For C*O,

U+ 2 ~(c/p) Dan.
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In the limit as t ~ -,

x
z _ 4DCaOt2
-— 1

which was

by (C/P)

increased

P

x= t“
{- )
23

P

(51)

required to be shown. The substitution of (C/P) a(ao- a)
ao(ao- a) is an overevaluation and can give only an

but not a decreased velocity.

6. Approximate Formulas for Reactions Strongly
Dependent on Temperature

Considering the theory of the thermal propagation of a flame,
approximate expressions of the flame velocity are considered for
the case where the velocity of the reaction increases rapidly with
increasing temperature so that the function @
(in which a

of equation (18)
and T are already expressed in terms of H) has a

sharp maximum for H near H2.

In equation (20), ~(z) is shown to have a sharp maximum for
z<<l. This case is of most interest for typical chemical reactions
of combustion.

According to assumption (22) that V(z) is different from O
only for z c ~, a strict evaluation can be given of the upper and
lower limits of the magnitude m in such form that for ~+0, they
approach the same value that is the limiting expression for m for
small ~.

The entire range of integration of z from O to 1 is
divided into two parts: from O to @ and from ~ to 1. In the
second part

dy
z=-m

Y=y(P) -m(z - B)

(52)

y(1) = o= Y(P) - m(l - ~) J
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hence, it follows that

so that finding
gerated value of
the first range,

Y(P)
nl=—

1 -$
(53)

the negative term my:

dy ‘ymax ~
Y~=q -my< ymax~=

r z

Yma~ = 2J’~dv
o

23

m reduces to determining Y(B)> where = -w-
Y(p) will give an exaggerated value of m. In
the exaggerated value y~ is obtained, rejecting

II B

L/’max (p)= 2 Vd”= @lY

o

(54)

(55)

where v is an auxiliary variable of integration and I denotes

P
the integral

J’
~dv. The limits of integration may also be extended

o
to unity without markedly chansing the integral because the case of
the function V is considered as having a sharp maximum at small
Z<p.

Thus, by taking

1

I =

s
ydv

o

(56)

the upper limit of m is obtained

mc~=+~+(l+p +=. .)@TforP<l (57)
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In order to find the lower limit ymin of y, the equation

is ~zrittenin the form solved for dy/dz and the
Ymax (z) from equation (55) is substituted on the

z z

L/” Jr
(v) du - ~z=y >ytin= V(v) du -

Y
o

max
v

2
J

~(w) du

o 0

dominating value
right side for y.

r z

rnz =J2 Ww’-mz
o

(58)

m>m
min

= ~21

@(a, T) = constant . ane-A/RT

1282

Thus, for small 6, the upper and lower limits coincide and
give the limiting expression

r
J

“=@I= 2 ‘Vdu

o

Chemical kinetics generally lead to the expression

(59)

(60)
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which after transformation gives

.... ., .,

qJ(z)=Czne 1-;2)
x = -b>l

RT2

‘o
A=l-q<l 1

This expression may be approximately represented by making use
of the assumption of Frank-Kamenetskii (reference 17) in the form

q(z) = Cc-x zne-xAz

which in agreement with equation (59) (consideringthe fact that

‘Xh<<l), givese

25

(61)

(62)

II2Ce
-x

m=
~Y)n-l ‘! (63)

Expressions (59) and (63) represent those approximate solutions
that are Given in references 10 and 15 where the physiochemical
consequences of these results are given in detail. The less accurate
but clearer derivation of these formulas directly from equations (6)
or (18) in the coordinates x,T or x,H will not be repeated; as
has been shown, a strict mathematical analysis confirms the correct-

li ness of this result. Expressions (60) and (62) do not become O~
I for T=TO and z=l. The numerical computation shows, however,
‘1

I that they are then very small (as exponents of large negative
numbers). The principal difficulties connected with this and the

i method of overcoming them were previously explained. Evidently in
cutting off ~(z) in the region where ~(z)< 1, the part played byI

j the magnitude 13(cp= O for z > p) will be played by the magnitude
p/XA, where y is of the order of several units.I

if, In this manner, expression (63) and corresponding formulas of
the previous work are correct in the limit when XAY>l (which
corresponds to the case 9<<1), that is, for

A (T2 - To)

RT2 >1
2

(64)
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as has been

By the

shown in references 10 and 15.

method of successive approximations, a correction of
the order l/Xk, l/x and their pwers can also be obtained in
expression (63) (see reference 16 for an example by P. G. Smirnov).
In view of our present knowledge of the velocity of a chemical
reaction and a number of idealized assumptions (for example, the
absence of heat losses), however, such exactness is of no practical
interest.

7. Case of

Those cases
centrations
considered.

Such a

a) Dcp

Mixture of Gases of

where the identical
and the temperature does

Different Molec~ar Weights

relation (16) between the con-
not hold will be briefly

relation does not hold if:

~ k and T # O, which holds true in a mixture of gases
differing considerably in their molecular weights.

b) Several (parallel or successive) chemical reactions take
place in the flame and the relations between their equations and
the velocity are such that the concentrationsof the different
chemical substances are not connected by algebraic relations.

In the first case, equations (6) md (7) must be considered.
A nondimensional transformation analogous to equation (19) is
again introduced. For exactness, Qm = @(aO, T2) is taken for the

unit of reaction velocityj Km = k(0,T2) and Cm = c(O~T2)the values

of the combustion products, are taken for the units of heat conduc-
tivity and heat capacity.

The nondimensional relative concentration a and the other
nondimensional magnitudes already employed are also introduced.
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a
a =—

a.

,. H2-H ~~
z =—

‘2 - ‘o

k (aT) @(a, T) Cm
q(a,z) =

C (a,T) Km@m

r

27

(65)

HZ- H=ha
o 0

Expressed in these variables, the heat conductivity and-diffusion
are transformed into

dy
y~+ my- ~(a,z) = O

da
-%Y~-Y& 8ay+my~- cp(u,z)=0

y dz

(66)

(67)
.

where

a=
Dcp$ (a,z) =~

e = e (CL,z) =
TDP (Hz-b)

kT

z =1, y=O,and
characterize the

The boundary conditions are z = O, y = O, a = O,
a = 1. The nondimensional magnitudes d and e
ratio of the diffusion to the temperature conductivity and the
thermodiffusion,respectively. In general, both magnitudes depend on
the composition and the temperature, that is, they depend on the
nondimensional variables w and z but they have neither singu-
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larities nor zeros in the entire range of variation of u and z.
At all times, 8 >Oj 9 >1 for a mixture containing a small amount
of a light gas (for example> H2 + 02 or H2 + Br2 in an insufficient

quantity of hydrogen). As a rtie, in mixtures in which $ >1,
y< O, and (3K O (in a thermodiffusion equilibrium, a light gas
generally concentrates in the hot part of the vessel).

For d= 1 and 19= O, the system has the obvious solution
a= z, which was previously used. In the general case of arbitrary
$, 19,and 1%, a method maybe proposed analogous to that previously
described that consists of the numerical integration of the equations
for different m at the initial stream conditions for z = O and
the choice of interpolation of such a value of m for which the
solution satisfies the conditions for z = 1.

The difficulty is that according to the general theory for the
integration of an equation of the second order for a, it is neces-
sary for z = O to give, in addition to a = O, the derivative
da/dz. An explanation is also necessary as to whether for one m
both conditions a = 1 and y = O will simultaneously be satisfied.

By dividing equations (66) and (67) by y and integrating, the
following equation is obtained for the solutions satisfying the con-
dition a = O,y= O for z=O:

Hence, that value of m for which y(1) = O also sat”~~fies

a(1) = 1 if ydu/dz=O for z=O and for z=l.

‘lOn ~ are imposed the conditions ~ = O for a = O, ~ = O in
the neighborhood of a = 1, z = 1, that is, @= O for T, a near
To, ao in the initial mixture as is required for the existence of the

propagation regime (see precedin~ discussion).

.—.. .

12The satisfying of Y = O for z = O and z = 1 is not suf-
ficient for this because -da/dz may approach infinity.

!!. !.. . . . Ill
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the
Near z = 1, u = 1, and y = O in the region in which cp= O,
equations reduce to the system

.-

1“

,,,..

dy
a=-m

Y =m(l-z) (69)

$$(1-z)g+a(l.. Z)++=o J
By retaining the principal terms (for small 1 - Z)13

Thus, by whatever law the curve u(z) approaches the point z = 1,
for that value of m at which point y = O,

da
y= = m(l- ~aSOz) dz

for z = 1 also in the case (~ cl} where
For obtaining

da/dz+m for z = 1.
m, it is therefore sufficient to give

z = o

y=o

a.= o

(70)

(71)

13The values of $ and f3 in equation (70) are taken for z = 1,
a= 1.
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and find the value of m for which the solution satisfies y = O
for z.= 1; the conditions u = 1 and z = 1 will be automatically
satisfied.-

By assuming g for
Y(O) #0, the folloting

small u in the form v = an ~(z) where
relations are obtained for small z<< 1:

CL= zforn>l

=~forncl
ad

As a rule, in the combustion of gases,
form:

9(U, z) = const ane
-A/(1-zA) ~

where A = E/RT~> 1.

(72)

-1

m2 1}-m- forn=l

the function q has the

-AAz
const a.ne (73)

The coefficient A usually lies between 7 and 20 and
A= (T2- To)/T2) 1 - A = To/T2 generally lies between 1/4 and 1/10.

For z = O andy= 0, the following relation is obtained for very
small z:

1
“rA

<< 1

V increases with increasing z because of increasing a but with
further increase in 2,9 rapidly (exponentially)drops. The region
of maximum Q near z = n/AA& 1 is of principal effect for the

r
integral *2.

From estimates (57) and (58) previously made, it follows that
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In the principal

31

region near maximum ~ and maximum y

whence, in the region of chemical reaction, the
equation (67) are

(the terms rejected are less than the remaining
n/Ah) therefore, it follows that in this region

independent of the value of
in the limit for very small

The result given, valid
activation (greater than A),

For this limiting case,
for the flame velocity:

where

m determining the
z.

g
‘Ydz (74)

principal terms of

terms in the ratio

(75)

ratio of a and z

in the limit for very large heat of
was pointed out by L. L. Landay.

the following simple formuia is obtained

~

(76)

cp=cp(a, z)= ql(u=:, z)

II
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Thus, in the case of a reaction with large heat
the velocity of which is O-an, the flame velocity
the elementary theory (59) for Dcp # k

(Dcp~k)‘n/2 in order to obtain the true
function of a must be substituted in @

k H2-H
a= —— fora. Dcp H2 - ~

From the form of the distribution of a

NACA TM 1282

of activation,
computed by

must be multiplied by

value; for @ , an arbitrary

HZ-H
H2-&l (77)

and T in space, conclusions-..
were drawn by the author concerning the instability of the plane wave
front relative to its’curving for Dcp> k (reference 15). The
physical properties of such mixtures were confirmed in the experimental
work of Drozdov and .Zeldovich(reference 17).

8. Equation of An Exothermal Chain Reaction

The case of several chemical reactions is very common. To de-
scribe the combustion of a mi~ure with chain kinetics, considering
at least two concentrations is necessary, namely those of the initial
substance a and the active centers and of the active intermediate
product b. In a number of papers by N. N. Semenov, his followers,
and the Institute of Chemical Physics a large number of active centers
were found to be formed in oxidation reactions, thus providing addi-
tional basis for expecting such to be the case in flames.

In certain cases, because of definite relations between the con-
centrations the problem can be reduced to the case of a single reac-
tion. Thus, in the case of ozone in the presence of a rapid rever-
sible reaction> as considered by Lewis and von Elbe (reference 9),
a balanced thermodynamic relation is established between the concen-
trations of the active centers and the initial substance. In a
rapid transformation of the initial substance into active centers
with the liberation of a large amount of heat, the velocity of the
flame propagation is determined by the single first reactionj the
succeeding slow transformation of the centers into the final sub-
stances does not affect the flame velocity. From the mathematical
point of view, these cases are trivial. In the most frequently
encountered nontrivial case) however, the transformation of a into
b generally occurs with a small liberation of heat with a large heat
of activation and autocatalysis of b; the transformation of b
into the final products is accompanied by the liberation of a large
amount of heat and depends little on the temperature. The system of
equations for an idealized typical chain reaction is used as an
example.
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Let the reaction be such that in a closed and heat-insulated
vessel, the equations of kinetics and the changes in temperat~e
have the form

da
P~= - Bl abeE/RT

db— = Blabe
p dt

-E/RT - B2b2

1

= = hB2b2
Cp at J

The equations of propagation for Dcp = kj y= 0, and for the addi-
tional simplifying assumptions, k = constant and c = constant, in
nondimensional variables may be written as

dyYZ+W-P2= o

d dp dp— - ~2 + B@.e-Alz = Oy~y~+mydZ

where
B1 -E/RT

‘=~e

T2 - To
El=El~

2

(78)

(79)

(80)

(81)

U=&
a.
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where a. is the initial concentrationof the substance and the
remaining nondimensional variables are the same as previously defined
with the following conditions: z = O> a = 0, j3= 0, y = O, y@/dz = O,

z = 1

CL= 1

Po=

Y=o

duo
‘E=

d$
y~=o

The following equation is easily obtained

where

a =Z-p

In this manner the two following equations are derived;

=+my+=o
y dz

For 1< z>>l/A1, set e-Alz~ O.

At the present time, the method of findin~ the value of m in
such a system is not clear. In the most practical case of the com-
bustion of hydrogen with oxygen (in this case, all the constants
entering the equation may be assumed as known), the problem is made
still more complicated by the fact that Dcp # k and that $a and

(82)

(83)

‘b are introduced in equations (83) so that it is necessary to con-
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sider a system of three equations.” The principal Mfficulty, how-
ever, is in the behavior of the solutions in the neighborhood of
singular points smd the conditions of the simultaneous satisfying—
of the boundary conditions by all the variables.
integration of-a-system of ordinati”’differenti”~
different values of one parameter does not offer

The.numerical
equations for
special difficulties.

SUMMARY

1. Equations are set up for heat conductivity and diffusion
considering the chemical reaction in the flame pzwpagated in an
explosive mixture.

2. General properties of the temperature distribution in the
flame are presented.

3. Conditions are described that must be satisfied by the
chemical reaction so that a regime of flsme propagation with constant
velocity would be possible.

4. For a definite relation between diffusion and heat conduc-
tion, a method is given for determining the flame velocity from the
equation by numerical integration; the uniqueness of the method
iS d-SO shown.

5. k estimate in quadrature is given of the upper and lower
limits of the flame velocity; with increasing temperature dependence
of the velocity of reaction, both limits approach each other, tending
toward a value that was given in previous papers on the basis of
physical considerations.

6. A method of solution and the limiting value of velocity
for an arbitrary relation between diffusion and heat conduction
are given.

7. Equations are set up for the flsme propagation in a chain
reaction.
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